CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Introduction and Objectives

Welcome to the Develop Estimate Methodology lesson. After completing this lesson, you will understand
the third of the five major steps of developing a software cost estimate.

Lesson Objectives

Ewvaluate the use of parametric, analogy, and other techniques in software cost estimating.

Summarize the use of cost estimating relationships {CERs) and schedule estimating relationships
{SERs) in software estimating.

Consider appropriate time phasing for a software estimate.

Critique the use of off-the-shelf (0TS} models for software estimating.

Develop Consider \ Document
Scope and ' Analyze Estimate Risk and 3 and Present
oach Data ff Methodology 4 Uncertainty Estimate

b
5
\

Develop % Collect and

-‘ | Page 1 of 41 | p

Back (J MNext

Long Description

Graphic illustrates the steps of the Cost Estimating process. The steps from left to right are:
Develop Scope and Approach, Collect and Analyze Data, Develop Estimate Methodology (highlighted),
Consider Risk and Uncertainty, and Document and Present Estimate.

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology

Parametric vs. Analogy

The first consideration in estimating software cost and
effort {labor hours or person-months) is to choose the
estimation method.

There are four major analytical methods or cost
estimating techniques:

Analogy

Parametric
Engineering Build-Up
Actual Costs

Of these, the first two are most important for software
cost estimating. Parametric is strongly preferred where
the data exist to support it, but Analogy is a perfectly
acceptable fallback.

Expert Opinion, which is not listed, is not admitted as a
stand-alone technique, though certainly subject matter
experts (SMEs) can help to identify and interpret
historical program data and advise on the application of
methodologies.

@' Questions Managers
S Should Ask

‘ | Page 2 of 41

Back &

TOC | RESOURCES | PRINT | HELP

Popup Text
Questions Managers Should Ask
Are the estimated costs and schedule consistent with demonstrated accomplishments on other projects?

o Did the estimate follow the organization’s structured and documented process for relating estimates
to actual costs and schedules of completed work?

e Did cost and schedule estimates quantify demonstrated organizational performance in ways that
normalize for differences among software products and projects (so that a simple, unnormalized,
lines-of-code per staff-month extrapolation is not the basis for the estimate)?

« Did extrapolations from past projects account for differences in application technology and the
effects of introduction of new software technology of processes?

o Did extrapolations from past projects account for observed, long-term trends in software technology
improvement?

Have steps been taken to ensure the integrity of the estimating process?

« Did management review and agree to the values for all descriptive parameters before costs were
estimated?

« Has more than one cost model or estimating approach been used, and were the differences in
results analyzed and explained?

« Were people from related but different projects or disciplines involved in preparing the estimate?

Note

Keep in mind that different techniques can be used for different cost elements; that different techniques
can be used throughout the program life cycle; and that a cross-check using a second technique can
significantly strengthen an estimate.

Long Description

Software Cost Estimation the center of the graphic with Analogy, Parametric, Engineering Build-Up and
Actual Costs linked to it with lines.

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Parametric vs. Analogy, Cont.

It is a myth that analogy is the only alternative early in a program, when some aspects of the system to
be acquired are not yet well-defined.

Analogy and parametric require the exact same inputs {and therefore definition for the program being
estimated), but the difference is analogy only requires one historical data point {comparable program],
whereas parametric requires many. Thus, the prevalence of analogy estimating early in development is
more of a practical than a theoretical consideration.

Often, investment in historical data collection happens in parallel with estimate development, so that as
the supporting database is built and scrubbed, parametric becomes a more viable option. In short,
parameftric is preferred because it offers measures of significance {confidence in using reasonable cost
drivers) and uncertainty {(the plus or minus around the estimate follows directly from the data set), both of
which analogy lacks.

Parametric

‘ | Page 3 of 41 | p

Back & J MNext

Long Description

Two flowcharts, one Analogy and the other Parametric. The Analogy flowchart has one subordinate Data
branch and the Parametric flowchart has three subordinate Data branches.

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Parametric vs. Analogy - Analogy Methodology

Analogy is the simplest form of estimating, capturing the essential thought process of all estimates. It
draws a direct comparison between the program being estimated and a similar, completed program for
which historical information is available. {(Two or three comparable historical programs is a bit of a gray
area between analogy and parametric, but in a classical analogy there is only a single comparable.’

The cost for the historical program is adjusted by a ratio of one or more parameters to capture the
differences between the two. There parameters should be as objective as possible.

For example, a previous development project produced 10 KSLOC with 50 person-months (PM) of effort.

If the current project is expected to generate 20 KSLOC, then the estimated effort would be 50 * (20/10)
= 100 PM. In this case, the math is simple enough we can do it in our heads - twice the code is estimated
to require twice the effort. This is illustrated in the graphic below.

Previous Current
Person Months (PM) KSLOC Person Months (PM)
50 10 (?) 20
(?)=50 X (20/10) = 100 PM

Mote that this is tantamount to applying a productivity rate {in this case 200 SLOC/PM), howewver, caution
should be practiced as this approach ignores fixed costs and economies or diseconomies of scale.

The analogy method is typically performed early in the cost estimating process, and is also commonly used
for cross-checking more detailed estimates (i.e., sanity check).

D

‘ | Page 4 of 41 | p

Popup Text

Analogy Cost Estimate

An estimate of costs based on historical data of a similar (analogous) item.
Long Description

Table with the following data:

Previous Current

Person Months (PM) | KSLOC | Person Months (PM) | KSLOC

50 10 ?) 20

(?) = 50 X (20/10) = 100 PM

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Parametric vs. Analogy - Analogy Advantages

Estimating by analogy has many advantages.

With emerging technologies and the rapidly evaolving
environment of software/IT, the number of
comparable historical programs may be limited, but
analogy requires only one,

Analogy is reasonably fast and inexpensive, and Ana Iogy ESti mate

easy to change.

Howewver, an estimate produced by analogy typically E Req u I rel I Ients
includes a high degree of cost risk because it is

based on a single historical data point {we know not |+ Fast

judgment in the selection of the comparable program Cost

and scaling quantity.

whether "lucky” or "unlucky,” except perhaps
anecdotally) and tends to require subjective E

Estimating by parametrics is one way to address l_ R ISk
some of this cost risk.

‘ | Page 5 of 41 | p

Long Description
List of Analogy Estimate advantages which include:

Requirements (Positive)
Fast (Positive)

Cost (Positive)

Risk (Negative)

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology

Parametric vs. Analogy - Parametric Methodology

The Parametric technique is the most commonly used and
most important for software estimation.

Sometimes called “statistical,” paramefric applies
regression analysis to a database of several similar
systems to develop cost estimating relationships (CERs].

CERs are equations that estimate the value of the
dependent variable {cost or effort) based on the values
of independent variables, or input parameters, such as
software size.

Prime candidates for these parameters are those program
characteristics that capture the cost drivers {Size,
Complexity, Capability).

When a software CER is applied, it is important to know
which activities are included in the predicted effort and
which must be estimated separately.

TOC | RESOURCES | PRINT | HELP

‘ | Page 6 of 41 | p

Popup Text
Parametric Cost Estimate

A cost estimating methodology using statistical relationships between historical costs and other program
variables such as system physical or performance characteristics, contractor output measures, or

manpower loading.

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Parametric vs. Analogy - Parametric Advantages

The parametric method has many advantages over
other estimating methods.

Because CERs are based upon more than a single
data point, estimating by parametrics is less risky
than estimating by analogy, and it also quantifies

the uncertainty in the CER, which can then be fed Pa rametric Esti mate

into the cost risk analysis.

Statistical significance allows us to be confident in Reduced R|Sk
[* Quantified Uncertainty

the cost-driving parameters we are using.

The primary challenge in implementing the
parametric approach is creating and maintaining the B i 1
supporting normalized database of historical Normallzatlon
programs.

‘ | Page 7 of 41 | p

Long Description
List of Parametric Estimate advantages which include:
e« Reduced Risk (Positive)

o Quantified Uncertainty (Positive)
« Normalization (Negative)

CLB023 Software Cost Estimating

Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Parametric vs. Analogy - Application

Whether applying the analogy or the parametric cost estimating technique, it is important to properly
structure and test the estimate.

Using the Work Breakdown Structure (WEBES) to decompose the system and applying the appropriate
costing techniques, the estimator should begin developing estimates for each of the cost elements. Keep
in mind that a software estimate is usually part of a larger estimate.

"Testing” the estimate may include cross-checking the results with historical data from similar

programs/systems; applying a different estimating methodology; and applying a different cost model. The
estimate can also be compared to industry rules of thumb or benchmarks.

SYSTEM

l
CI-1

|
| CI11 |
| HW

;:ééa‘ cms‘

L

Cl-121 | | CI-122
HW || HW

Cl-21

1 v eevgg— -
Cl-211 | (CI-212) (CSCI-213)
HW | Fw J sw i

Cl-221
HW

CF22I
——

S

I
Cl-3

I_,.—l

CI-31 |(CSCI-32)
HW [l sw

Cl-222
FW

Page 8 of 41

« |

N

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Other Methodologies - Engineering Build- Up

Because software is intangible, Engineering Build-Up is
not really applicable in the same way it is implemented
for hardware in a manufacturing environment.

Perhaps the closest equivalent is Function Paoint

counting, which requires a detailed design similar to

other build-up methods, but there are no corresponding

labor standards for "building” the code to implement

each function point. T
Similarly, there is some affinity with productivity-based TIUU LN _u.'
methods, though there would have to be a e .
decomposition to the CSU level with specific H'r; J AL ': {21
productivities at that level for the comparison not to

be strained. IU!UIQ A UL

T ilw
JLIL IR

L B
LL00UQOUE.

‘ | Page 0 of 41 | p

Popup Text
Engineering Build-Up

Derived by summing detailed cost estimates of the individual work packages and adding appropriate
burdens. Usually determined by a contractor’s industrial engineers, price analysts, and cost accountants.

CLB023 Software Cost Estimating

Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Other Methodologies - Actual Costs

The Actual Costs technique extrapolates future estimated costs from actual costs, similar to analogy but
based on data from the same program.

It is often called "Extrapolation” or "Extrapolation from Actuals.” There are three variants: average, learning
curve and estimate at completion. Select each tab below to read more.

_ Learning Curve Estimate At Completion

One wvariant is just to use an average. In the ProRad
example, if all waveforms were created equal, and the
first ten were complete, we could simply estimate the

per-waveform cost of the remaining 21 as an average
of those first ten.

-‘| Page 10 of 41 |p

Popup Text
Extrapolation from Actual Costs
Extrapolation method requires prototype or preproduction actual cost data on the system considered.

Primarily used in estimating the production cost of system hardware, and assumes a relationship
(technical, performance) between cost of prototypes and production units.

Average

One variant is just to use an average. In the ProRad example, if all waveforms were created equal, and
the first ten were complete, we could simply estimate the per-waveform cost of the remaining 21 as an
average of those first ten.

Learning Curve

The second variant is learning curve, which applies only to recurring production and therefore is not
germane to software.

Estimate At Completion

The third, and most applicable, is the Estimate At Completion (EAC) generated when conducting earned
value management (EVM) on an in-process development effort.

Estimate At Completion (EAC)

Actual direct costs, plus indirect costs or costs allocable to the contract, plus the estimate of costs (direct
and indirect) for authorized work remaining.

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Other Methodologies - Actuals Cost, Cont.

Actuals is generally considered a high-fidelity technique for more concrete items such as hardware, since
it uses the latest data from the program itself. Its application to software is a challenge because it is
intangible, process-intensive, and there are often no definable end items until the development is
complete, This is a more acute case and of the primary concern with EVM EACs in general, that
performance on work to date may not be indicative of performance on the remaining work,

For example, if the development team performed only a cursory design effort and “declared victory,” their
earned value metrics may look quite good heading into coding, but problems may arise later in testing.

This concern is mitigated if the organization has an established track record of how EACs change over
time throughout similar development efforts. If the Actuals method is used, the application of statistical
analysis beyond the standard DAL Gold Card formulae is encouraged.If successful, the same benefits can
result as in traditional regression-based CERs.

Finally, since Actuals requires the development effort to be significantly underway, it cannot be used
beforehand for determining budgets. Select the images below to view the DAL Gold Card.

A Camsmo Yaoss Massoasn s e

-‘| Page 11 of 41 |p

Back) Next

http:encouraged.If

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Cost Estimating Relationships (CERs)

The primary CERs of interest are those that estimate the “core” software development activities, ideally
requirements through software test. As previously noted, this requires a historical database of software
programs where the effort has been normalized to the same set of activities, and size expressed in a
common measure such as ESLOC. Other factors that affect effort may be handled in one of several ways:

_Additiunaanriahles Segregation | Indicator Variables

: - rarLIL ink
If different CSCIs were coded in different languages, e

for example, the ESLOC of one could be adjusted so €0\ indan curraniiian b
that it reflects an equivalent effort in the other it 1::::‘ \rrayinduituttiBountat 1
language. -

g g e o Iﬁ-"""‘t Lodat I
Mote that such a conversion factor may be difficult to L + indan) comt

. .. 1-‘: '“-l
determine empirically. conat Wolect b pparaneriit

i . o :.'u.'-'f'l“w",“
£\ et yiRmantst W

ML AR resyiatut

o :

yptas W

eqpare Soinctst

Y

_

aranet

. wacter & ¥ s

It is generally preferred to dewvelop your own CERs, but CERs eomat VU al At ot

; . g e

validated by industry sources or funded by the government, such % \
. e Gt

as the service cost centers or federally-funded research and st ﬂ‘““'ﬁ

development corporations (FFRDCs) like Rand and MITRE are also -‘F“

available,

-‘| Page 12 of 41 |p

Back) Next

Popup Text
Cost Estimating Relationship (CER)

A mathematical relationship that defines cost as a function of one or more parameters such as
performance, operating characteristics, physical characteristics, etc.

Normalization

If different CSCls were coded in different languages, for example, the ESLOC of one could be adjusted so
that it reflects an equivalent effort in the other language.

Note that such a conversion factor may be difficult to determine empirically.
Additional Variables

Additional explanatory variables usually referred to as independent variables, can be introduced, such as
average years of experience of the development team.

It is desired that such variables prove to be statistically significant.
Segregation
Data sets may be separated and distinct CERs run on each.

For example, if Ground Systems and Aircraft have fundamentally different software productivities, each
could have its own CER.

In this case, the analyst is trading off more data points (degrees of freedom) and gaining (presumably)
“tighter” sets in return.

Popup Text
Indicator Variables

In this “have-your-cake-and-eat-it-too” approach, the data set remains undivided, maintaining the
advantage of a high number of degrees of freedom, but an indicator variable is added to account for the
difference in the two populations, either as an adder (for additive CERS) or a factor (for multiplicative

CERSs).

This is generally preferable to segregation, though if the two populations are not statistically distinct
enough, a simple combined CER with no indicator variable may prove to be superior.

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Cost Estimating Relationships (CERs) - COCOMO II CER

The COnstructive COst MOdel (COCOMO®E) is used
for estimating cost, effort, and schedule when
planning a new software development activity.

COCOMO is an academic (not commercial), publichy-
available model, and its CERs are open for
inspection, avoiding the "black box"” objection to
commercial models.,

Tt ey

The original COCOMO model was first published in
1981 and subsequently updated as COCOMO II to
reflect changes in the software development
process, including:

Increases in desktop processing

+ Code reuse

. gﬂf?rgftgement of the software development SOFTWARE
ENGINEERING
ECONOMICS

BARRY W BOEHM

-‘| Page 13 of 41 |p

Back) Next

Popup Text
COnstructive COst MOdel (COCOMO®)

The second generation of estimating models put out by Barry Boehm and others based on their work at
the University of Southern California (USC).

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Cost Estimating Relationships (CERs) - COCOMO II CER, Cont.

The graphic illustrates a simplified version of the primary COCOMO II CER, with factors accounting for

Complexity and Capability set to nominal values. There is a single cost-driving parameter, Size, which is
expressed in KSLOC,

The exponent of 1.1, being slightly greater than one, indicates modest diseconomies of scale, so that

effort increases at an increasing rate as size growth. The dependent variable is effort, expressed in
person-months (PM).

Dependent Cost Driving _
vana&e (Effort) Parameter Greater than 1.0 indicates

(Person-months) (KSLOC) diseconomies of scale

PM = 2.94-Size"

-‘| Page 14 of 41 |p

Back) Next

Long Description

Labeled graphic of primary COCOMO Il CER. The primary CER is PM = 2.94 * Size to the 1.1. PM labeled
Dependent Variable (Effort) (Person-months); Size is labeled Cost Driving Parameter (KSLOC) and
exponent 1.1 is labeled Greater than 1.0 indicates diseconomies of scale.

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Cost Estimating Relationships (CERs) - Response to Size

This graph shows the behavior of cost {effort) as a function of size. As expected, effort increases as
size increases. In many cases, the response is approximately linear, but this can change markedly
depending on factors such as how well the project is managed.

As previously described, when Diseconomies of Scale are present, the exponent on size is greater than
one, and the graph curves upward {second derivative positive!), whereas when Economies of Scale are
present, the exponent is less than one and the graph curves downward {second derivative negative).

Again, experience has shown that most projects are prone to diseconomies of scale, so be wary of any
software estimate that does not include them.

s | COCOMO Ii Scale Factors

i

14

i
[

ey LOW

Low

=]

Nominal

=
=
n
e
=
=3
£=
F
g 10
e
3
A=
had

o

High

=9

w\f2 1y High

[

= Evtra High

0 400 00

[@' Questions Managers] Size (KsLOC)
[7]

Should Ask

-‘| Page 15 of 41 |p

Back) Next

Popup Text
Questions Managers Should Ask
Has the task been appropriately sized?

« Have structured and documented processes been used to estimate and describe the size of the
software product, and to estimate and describe the extent of reuse?

e Is the sizing estimate based on a solid understanding of both defined and emerging requirements?

« Have the descriptions of size and reuse identified what is included in (and excluded from) the size
and reuse measures used?

« Do the measures of reuse distinguish between code that will be modified and code that will be
integrated as-is into the system?

e Are the definitions, measures, and rules used to describe size and reuse consistent with the
requirements (and calibrations) of any models used to estimate cost and schedule?

« Was the size estimate checked by relating it to measured sizes of other software products or
components?

« Was the size estimating process checked by testing its predictive capabilities against measured sizes
of completed products?

Are the estimated costs and schedule consistent with demonstrated accomplishments on other projects?
« Did the methods used to account for reuse recognize that reuse is not free (so that the estimate

accounts for activities such as interface design, modification, integration, testing, and
documentation that are associated with effective reuse)?

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Cost Estimating Relationships (CERs) - Diseconomies of Scale

Diseconomies of scale can be mitigated somewhat
by the use of software tools and a collocated
collaborative environment, captured in the previous
Capability discussion as the TOOL {Use of Software
Tools) and SITE (Multisite Development) factors in
CoComMo 11,

Howewver, since these are applied as simple
multipliers in the estimate, they do not change the
exponent, so that while high ratings can reduce the
estimate for a give size, the response of the
estimate to size will continue to reflect the
diseconomies of scale as size grows.

The multiplers are discussed next.

-‘| Page 16 of 41 |p

Back) Next

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Cost Estimating Relationships (CERs) - Response to Capability and Complexity

Mot shown in the simplified COCOMO II CER are a number of effort multipliers {(EMs), that can be used to
scale costs linearly after the effect of size is captured. Though part of a Parametric equation {CER), these
EMs reflect more of an Analogy thought process,

For example, if a software product rates High {instead of Nominal) on the Required Software Reliability
{RELY factor, a multiplier of 1.15 {instead of 1.0} is applied. What we are saying is that requiring higher
reliability increases software development costs by 15%. The effect for Very High RELY is even more
pronounced, with a 1.40 factor (or 40% adder).

High (RELY) Very High (RELY)

The EMs can also be viewed as a sort of calibration step wherein the essential cost-driving relationship
with Size is improved by taking into account these other factors. The ratings {Very Low / Low / Mominal /
High / Very High / Extra High) that translate into EMs represent an ordinal scale {Mominal is "greater than”
Low), but neither an interval nor a ratio scale. That is, the difference between High and Mominal is not

equal to the difference between Mominal and Low, nor is High (4th on the scale) twice Low (2nd on the
scalel.

@' Questions Managers]

Should Ask

-‘| Page 17 of 41 |p

Back) Next

Popup Text
Questions Managers Should Ask
Are the estimated costs and schedule consistent with demonstrated accomplishments on other projects?

o Does the estimate reflect the actual capability and demonstrated productivity of the software
development organization (or an appropriate range if the organization is not yet known)?

Long Description

Two arrows pointing upward, one 15% Cost labeled High (RELY) and the other 40% Cost labeled Very
High (RELY).

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Cost Estimating Relationships (CERs) - ProRad CER Example

The below table shows the simplified COCOMO II CER applied to the ProRad SLOC counts for key
performance parameters (KPP) waveforms with all new code, with nominal parameter values. Estimates are
in person-months (PM).

The cost column gives the equivalent at a notional fully-burdened labor rate of $16K/PM. The effort
estimates may need to be adjusted up or down as the Complexity and Capability associated with each
waveform and its developer, respectively, depart from the nominal values inherent in the simplified CER.
Mote that these costs are lower than those shown later on for these waveforms, developed using a
different model.

Waveform Reg Type | Difficulty MNew Effort (PM) | Cost (5M)
EPLRS Kpp 3 75 Mo
Wideband Digital Waveform KPP 3 es 8895 514.2
SINCGARS ESIP KPP 2 53 MNa
UHF DAMA/DASA SATCOM (181, 182, 183) Kpp 2 B8 Yes 404.8 $6.5
z
1
3

UHF DAMASDASA SATCOM (184) KPP 30 Yes 1239 £2.0
HAVE QUICK 1711 {(LIHF) KPP 5 Yes 17.3 503
Link 1& Threshald (T) 100 Yes 466.0 475

Viewing these COCOMO results as a cross-check, you would want to ask questions as to why the primary
estimates are significantly higher: Inclusion of additional activities? Higher factors for
difficulty/complexity? Addition of code growth and other risk? Application of a higher labor rate? All of the
above? It all comes back to the question asked in the data normalization section: "What's in the number?”

D

-‘| Page 18 of 41 |p

Back ——) Next

Long Description

Table with the following data:

Waveform Req Type Difficulty | KSLOC | New | Effort Cost
(PM) (M)

EPLRS KPP 3 75 No

Wideband Digital KPP 3 180 Yes | 889.5 14.2

Waverform

SINCGARS ESIP KPP 2 53 No

UHF DAMA/DASA SATCOM KPP 2 88 Yes |404.8 6.5

(181, 182, 183)

UHF DAMA/DASA SATCOM KPP 2 30 Yes |123.9 2.0

(184)

HAVE QUICK I/11 (UHF) KPP 1 5 Yes | 17.3 .3

Link 16 Threshold 3 100 Yes |466.0 7.5

M

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology

Cost-on-Cost CERs

Some supporting activities such as Systems
Engineering and Program Management {SE/PM), and
their associated so-called "below-the-line” {BTL)
costs, are often seen as being driven by the core
effort - software development, in this case.

These may then be estimated by cost-on-cost
CERs, meaning that both the input to and output
from the CER are costs {or effort in hours).

In deriving the CER, the cost input values are
historical actuals, but in applying the CER, the cost
input must be estimated first by one of the
previously-discussed methods.

Software-specific below-the-lines may include
things like configuration management {CM) and
independent verification and wvalidation {IWVE&W).

V&Y is roughly the software equivalent of Quality
Assurance {QA) in manufacturing, which is also
often estimating as a below-the-line.

Depending on the program WEBS, more general
below-the-lines such SE/PM may be driven by
software development together with hardware
development costs, for example.

-‘| Page 10 of 41 |p

Back —) Next

TOC | RESOURCES | PRINT | HELP

Popup Text
Independent Verification and Validation (IV&V)

An independent review of software performed by an organization that is technically, managerially, and
financially independent of the development organization.

Note
Note that a full-fledged CER based on a representative data set is preferred to a simple factor.
The former is allowed to have a non-zero y-intercept, and while we caution against strictly interpreting

this as a fixed cost, the idea is that the additional degree of freedom allows the CER to better reflect the
driving relationship without requiring a fixed percentage for all sizes of project.

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Cost-on-Cost CERs - ProRad SE/PM Example

The data table below left shows core software development together with IVE&W activities for five
historical programs deemed comparable to ProRad. In additional columns IV&VY is expressed as a
percentage of core software development effort for each of the individual programs.

Rather than take the average of these percentages (or worse yet “cherry-pick” one of them), a
regression can be run to express each of the below-the-line (BTL) cost elements as a simple linear
equation {depicted in chart bottom right). Mote that the coefficient in the equation is significantly
different than the averaged percentages (and even the individual percentages), due to a noticeable non-
zero y-intercept.

Remember, IV&V requirements vary by program. The additional cost of this activity provides assurance
beyond just in-house testing.

53.0

52.5

SW Devel
s 10.0
s 50.0
s 30.0
s 25.0 }
s 40.0 0% 50.5
% 31.0

52.0

51.5

IVEV ($M)

51.0

y = 0,0433x + 0,7092
R2 = 0,8531

5

5100 520.0 530.0 S40.0 550.0 S60.0
SW Devel (SM)

-‘| Page 20 of 41 |p

Back —) Next

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Schedule Estimating Relationships (SERs)

For acquisition programs in general and for software
development in particular, it is important to
consider schedule in conjunction with cost.

Using estimates of cost and effort, a tentative,
projected schedule is developed. While detailed
network schedules for a project are usually the
purview of the implementers of the earned value
management system (EVMS], schedule estimating,
especially using parametric techniques to predict
and assess top-level schedules, often falls to the
cost analyst.

The cost analyst is intimately familiar with these
techniques and has often collected the cost and
schedule data needed to drive them.

@' Questions Managers
S Should Ask

-‘| Page 21 of 41 |p

Back —) Next

Popup Text
Questions Managers Should Ask
Have steps been taken to ensure the integrity of the estimating process?

e Are the cost and schedule estimated consistently?

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology

Schedule Estimating Relationships (SERs), Cont.

A schedule estimating relationship {SER] is used to
predict schedule {duration) for a project in the same
way that a CER is used to predict its cost {effort].

Data from several comparable historical programs are
used to derive an equation {preferably using
regression analysis) that relates the dependent
variable of Schedule to one or more independent
variables.

As is the case with the COCOMO II, the primary driver
for a software development SER is often total effort.
In this case, the SER operates very much like the
Cost-on-Cost CERs just discussed: its input
parameter is actually the output from a related
estimate.

Whereas effort is measured in units (such as person-
months or labor hours) that account for multiple
developers working concurrently, schedule is
measured in units of literal time: days, months, or
YEars.

To emphasize this distinction, one might refer to
schedule units as calendar months or calendar years
{instead of person-months or staff-years).

-‘| Page 22 of 41 |p

Back —) Next

TOC | RESOURCES | PRINT | HELP

Popup Text
Schedule Estimating Relationship (SER)

A parametric relationship that estimates the total schedule (duration) of a program, project, or task based
on historical data from several comparable efforts, often driven by the corresponding total labor hours or

cost.

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Schedule Estimating Relationships - COCOMO SER

The graphic illustrates a slightly simplified version of the primary COCOMO II SER, a function of effort in
person-months (PM) as estimated by the COCOMO II CER.

Its scale factors have also been set to reflect modest diseconomies of scale, as captured by the 1.1
exponent in the CER.

The exponent of the SER is higher as a result of those diseconomies of scale, though it is still significantly

less than 1, indicating that schedule {in calendar months) grows, but at a decreasing rate, as effort {in
person-month) grows.

TDEV =3.67-PM"*

-‘| Page 23 of 41 |p

Back —) Next

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology

Schedule Estimating Relationships - Schedule Compression

It is not unusual for there to be a specific schedule
imposed on a software development effort. The
deadline may be driven by an external need such as
Y2k, or it may simply be that the contractor proposed
a certain date, and it will cost money if it is missed.

Mo program is immune to schedule pressures, but
software projects are arguably more susceptible,
because the product {and hence progress thereon) is
moare intangible, and there may be a greater
temptation to “declare victory” and deliver as is.

Compressing a schedule to less than a normal length of
time can require more programmers on the effort
leading to more opportunity for failed communication
and coordination.

It may also cause developers to cut corners - to fail
to spend the necessary time in understanding the
requirements and laying out the design, which can lead
to problems discovered during coding and unit testing.

-‘| Page 24 of 41 |p

Back —) Next

TOC | RESOURCES | PRINT | HELP

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology

Schedule Estimating Relationships - Schedule Compression, Cont.

Fixes made during code and test normally take much
longer and require more effort than problems that are
found during the design phase.

Programmers may not document or test the code as
well as they would if they were not under schedule
constraints which can lead to problems in maintenance
and ease of reuse.

Though not evident in the simplified COCOMO II CER, a
compressed schedule is expected to result in greater
total effort {PM), not just the increased staffing levels
that are an obvious consequence of dividing the same
effort over a shorter duration.

There is a schedule-related Effort Multiplier (EM) that
captures this effect. In COCOMO II, there is no penalty
for lengthening a project beyond its nominal schedule,
though other sources show this should also increase
total effort but not as acutely.

-‘| Page 25 of 41 |p

Back —) Next

TOC | RESOURCES | PRINT | HELP

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology

Time-Phasing

In conjunction with estimating the effort (total labor
hours or person-months) and the schedule {calendar
days or months), it is generally good practice to
spread or "time-phase” the effort across the schedule.

Initially, a broad-brush, top-level approach will
suffice, in support of annual program budgets. For
contract execution, a more detailed, bottom-up
approach is desired to produce a month-by-month
allocation.

Two key cross-checks for time-phasing are average
staffing and peak staffing, both usually expressed in
full- time equivalents (FTE).

If effort and schedule estimates are already in person-
months {calibrated to the appropriate standard hours
per month) and calendar months, respectively, then
the quotient of the two should be the average staffing
in FTE. The peak staffing is dependent upon the time-
phasing and is often significantly higher than the
average.

Can they hire that many qualified developers {peak)?
Can they maintain that level of staffing (average]? If
the answer to either of these is no, consider extending
the schedule or adjusting the time-phasing.

-‘| Page260f41 | [P

Back —) Next

TOC | RESOURCES | PRINT | HELP

Popup Text
Note

DAU offers a continuous learning module, CLBO31 Time Phasing, with much more detail and applications
beyond just software estimating.

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Time-Phasing - Time-Phasing Technigues

As with effort and schedule, time-phasing may apply Analogy and Parametric methodologies. A Resource-
Loaded Schedule approach may also be used. Select each tab below to read more.

_ Parametric | Resource-Loaded Schedule

Apply {empirical) time-phasing profiles from actual data
on a similar project,

Often these profiles are in percentages so that they can
be applied across varying durations.

This can be done at a total project level, or different
profiles can be applied to different activities
{requirements, development, testing, etc.).

As historical data are being gathered, "anecdotal
actuals” in the form of rough percentages from a SME
may do as a first cut,

-‘| Page 27 of 41 |p

Back —) Next

Popup Text

Analogy

Apply (empirical) time-phasing profiles from actual data on a similar project.

Often these profiles are in percentages so that they can be applied across varying durations.

This can be done at a total project level, or different profiles can be applied to different activities
(requirements, development, testing, etc.).

As historical data are being gathered, “anecdotal actuals” in the form of rough percentages from a SME
may do as a first cut.

Parametric

Similar to the analogy approach, but the historical data are abstracted to a best-fit probability distribution
based on one or more actual projects.

The cumulative distribution function (CDF) or S-curve shows the cumulative percent complete from 0% to
100% as a function of elapsed time, which can be scaled to any estimated duration.

Common distributions used include Rayleigh, Weilbull, and Beta.

Popup Text
Resource-Loaded Schedule

The performance measurement baseline, or PMB, used to implement earned value management (EVM) on
a project is essentially a resource-loaded schedule, or a time-phased budget.

The nuanced difference between the two is that the former generally entails that specific resources, i.e.,
developers, not just labor categories, have been assigned to tasks.

Picture a Gantt chart depicting a series of interrelated tasks and milestones, with the best estimates of
when each task will commence, the associated effort and duration, and any predecessor/successor
dependencies.

The associated hours may be time-phased within each task, using the Analogy or Parametric approaches
just discussed. If the task is relatively short or low level of effort, a Uniform distribution (even spread or

“level loading”) may suffice.

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Time-Phasing - Schedule Building and QA

Resource-Loading may also be used to determine the schedule {duration) itself, either as a cross-check of
a parametric SER {early on) or as the primary methodology (later, during execution].

Cne or more software engineers with experience in the specific application under development should
develop a schedule estimate as follows:

+ Expand the WBS to delineate the order in which functional elements will be developed. The order of
development will define which functions can be developed in parallel as well as dependencies that
drive the schedule.

A development schedule should be derived for each set of functions that can be developed
independently, for example, a schedule for each build of an incremental development.

+ The schedule for each set of independent functions should be derived as the aggregate of the
estimated time required for each major phase of the development: requirements analysis; design,
code, and unit test; and integration and test,

s« The total project schedule should reflect the aggregate of the product development, including
documentation and formal review requirements.

Program schedules are often fraught with errors, inconsistencies, and insufficient estimates. It is generally
wise to apply independent criteria to assess the adequacy of a schedule. This can be done with a
combination of automated models and manual review by software and schedule experts. The GAD Schedule
Assessment Guide may prove helpful.

-‘| Page 28 of 41 |p

Back —) Next

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Off-The-Shelf (OTS) Cost Models

Several ready-made cost estimating models,
referred to as off-the-shelf, or 0TS, models, can
assist in developing software estimates, offering a
graphical user interface {GUI) and other
conveniences.

These models have been developed over the years

with industry data from hundreds, even thousands, -

of projects, and they can be tailored and calibrated ETE
to specific program design requirements or program "";:'H:“ e
actuals.

Some of the most commonly used models in the
industry are discussed in the lesson. More
information is available on the vendors' websites.

COCOMO IT is used as an example throughout this

module because of its status as a widely-used,

widely-scrutinized academic model, with some True Program Success™
insight into how its estimating relationships are

derived from actual data. @ S .
. G A L ©O R A T H

@' Questions Managers
S Should Ask

-‘| Page 20 of 41 |p

Back —) Next

Popup Text
Questions Managers Should Ask

Are the estimated costs and schedule consistent with demonstrated accomplishments on other projects?

Were any cost and schedule models used to develop the cost estimate calibrated to relevant

historical data?
Was the calibration of any cost and schedule models done with the same versions of the models that

were used to prepare the estimate?
Have steps been taken to ensure the integrity of the estimating process?

Is at least one member of the estimating team an experienced estimator and trained in any cost
models that were used?

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology

Off-The-Shelf (OTS) Cost Models, Cont.

0TS cost models generally require little or no data,
so they are useful when no historical data are
available.

Howewver, if you use one of these models with no
historic data specific to your type of program or
environment, you're implicitly accepting the
"generic” estimate produced by the model based on
industry-average data. It is generally preferable to
calibrate 0TS models.

The primary disadvantage of using these models is
the so-called "black-box" syndrome, the limited
insight into the processes applied to derive the
estimate, such as underlying data sets, component
CERs, statistical significance, and the like.

-‘| Page 30 of 41 |p

Back —) Next

TOC | RESOURCES | PRINT | HELP

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Off-The-Shelf (OTS) Cost Models - Functionality

The 0TS models generally have a number of inputs that attempt to characterize the software project and
its relative scope and difficulty, including:

Sizing and reuse information
+ Developer tools and experience

+ Software application and quality requirements

Examples of additional environmental parameters that must be determined and entered into the model
include, but are not limited to, program complexity, programming language, requirements volatility, analyst
capability, and execution time constraint. Many of these are similar to the COCZOMO effort multipliers (EMs)
seen earlier.

Based on these inputs, the models will determine total effort, schedule, and time-phasing. As noted, this is
a "black box,” with the algorithms used to do so not completely documented. To some extent, you can
“reverse-engineer” a model by varying input parameters and seeing how the corresponding outputs
change.

0TS models may provide a variety of outputs, including estimate by WBS and various summary graphs. The
risk and uncertainty capabilities of most OTS models is limited, and often risk analysis needs to be
conducted in a separate model.

-‘| Page 31 of 41 |p

Back —) Next

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Off-The-Shelf (OTS) Cost Models - Calibration and Cross-Checks

When using an OTS model, attempt to calibrate it
using actual cost, technical, and programmatic data
from at least one comparable historical program.

The model is adjusted to more closely reproduce the
historical costs when given the corresponding
parameter values as inputs.

Beware that the model calibration process is often
"fuzzy" and must be done with care and well
documented so as to be defensible.

0TS software models, given equivalent inputs,
would be expected to produce results of at least
the same order of magnitude, but this is not always
the case.

As with any cross-check, if the results of two
different methods are comparable, confidence in the PI‘DQI‘EHT'I
estimate increases,

Both cost (effort) and schedule (duration) estimates
should be compared.

-‘| Page 32 of 41 |p

Back —) Next

Long Description

Semispherical gauge illustration named Legacy Program with Cost, Technical and Data located at
different points of the gauge face.

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Off-The-Shelf (OTS) Cost Models - Calibration and Cross-Checks, Cont.

If two models produce significantly different
estimates, it calls into question whether both have
been thoroughly calibrated and tested.

If this happens, confidence in the estimate
decreases pending further investigation.

Cross-checks focus attention on the content of the
estimate and the techniques used to derive it

Due to the inherent uncertainty of all estimating
methods, never expect two methods to produce
precisely the same result but rather to be "in the e —

- i - = an i P
TN R e S BeRe e l A , - H 3 Fgh= = e —l

same ballpark.” = Py T e T T e

-‘| Page 33 of 41 |p

Back —) Next

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Off-The-Shelf (OTS) Cost Models - Market Survey

Each of the following OTS Cost Models can be used for estimation purposes. Select each tab to learn
more.

B ucS® | SEER-SEM® SLIM-Estimate®

The Revised Enhanced Version of Intermediate COCOMO,
or REVIC, was developed by Mr. Ray Kile, an estimator at
the Air Force Cost Analysis Agency (AFCAA) in the 1980s,

He felt that COCOMO was not specific enough for DoD
use, so he revised the COCOMO database.

The main difference between REVIC 94 and COCOMO II
are the coefficients used in the effort equation, which in
REVIC are based on data from only Dol projects.

Select the AFCAA seal for more information.

-‘| Page 34 of 41 |p

Back — MNext

Popup Text
REVIC 94

The Revised Enhanced Version of Intermediate COCOMO, or REVIC, was developed by Mr. Ray Kile, an
estimator at the Air Force Cost Analysis Agency (AFCAA) in the 1980s.

He felt that COCOMO was not specific enough for DoD use, so he revised the COCOMO database.

The main difference between REVIC 94 and COCOMO Il are the coefficients used in the effort equation,
which in REVIC are based on data from only DoD projects.

Select the AFCAA seal for more information.
True S®

Formerly known as PRICE S®, the PRICE Systems software model is part of the True Planning suite of
estimating tools.

It is used for estimating the costs and schedules of software development projects.
Output includes effort in person-months or dollars and schedule in a report format that is highly tailorable.

Select the logo to learn more about the PRICE Systems.

Popup Text

SEER-SEM®

Software Evaluation and Estimation of Resources Software Estimating Model (SEER-SEM) predicts,
measures, and analyzes resources, staffing, schedules, and costs for software projects. Outputs include
effort in person-months or dollars and schedule in a variety or report formats.

SEER-SEM can be calibrated by computing an effective technology rating (ETR) from past programs. The

ETR is one of the factors used by SEER-SEM in processing. The model is also tailorable for different labor
rates, phases, etc. Select the logo below to view the Galorath website for more information.

SLIM-Estimate®
Part of the Software Lifecycle Management (SLIM suite), SLIM-Estimate helps you estimate the time,
effort, and cost required satisfying a given set of requirements and determining the best strategy for

designing and implementing your software or systems project.

Select the logo to view more information on the QSM website.

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

ProRad Estimates

The Joint ProRad Program Cffice used an 0TS
software model to estimate the software
development effort for the 31 waveforms. Inputs
included:

User requirements

Lines of code to develop, verify, and test
Character of the code: reusable/naw;
designed for reuse; modified or new object
design and develop
Character of the development team:
experience; skill
Minimum time constraints

+ Development and target host environments

+ Development and integration risk

The cost for each waveform was calculated as:
Effort {in Staff Months) x Average Staff Month Rate
(Loaded).

The resulting costs were distributed over the

development schedule and escalated to then-year
dollars as shown in this table. a se u y

-‘| Page 35 of 41 |p

Back — MNext

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Knowledge Review

FILL IN THE BLAMKS: The simplified COCOMO II CER applied to new
code development gives effort in as a function of size in

Labor hours; SLOC

Labor hours; KSLOC

Person-months; SLOC

o Person-months; KSLOC

Check Answer

The simplified COCOMO II CER applied to new code development gives effort in person-months as
a function of size in KSLOC.

-‘| Page 36 of 41 |p

Back — MNext

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Knowledge Review

FILL IN THE BLAMKS: The simplified COCOMO II SER gives schedule
in as a function of effort in

Calendar days; labor hours

Calendar days; person-months

Calendar months; labor hours

+' Calendar months; person-months

Check Answer

The simplified COCOMO II SER gives schedule in calendar-months as a function of effort in
person-months.

-‘| Page 37 of 41 |p

Back — MNext

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Knowledge Review

Which of the following is not an advantage of Parametric over
Analogy as a technique for software estimates.

Has an objective measure of validity (statistical
significance)

+' Requires less data (one historical program vs. many)

Has a statistical measure of uncertainty {standard error)

Can account for economies or diseconomies of scale
(non-linear)

Check Answer

Requiring less data is not an advantage of Parametric over Analogy as a technique for software
estimates. On the contrary, Parametric requires several comparable historical data points, whereas a
classic Analogy can be achieved with only one.

-‘| Page 38 of 41 |p

Back — MNext

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Knowledge Review

Which of the following is not typically true of OTS software
estimating models?

Evaolved over many years
Based on industry data
Lack a graphical user interface [(GUI}

Estimate both cost (effort) and schedule {duration)

Hawe multiple input parameters

Check Answer

Lack a graphical user interface (GUI) is not typically true of OTS software estimating models,

-‘| Page 30 of 41 |p

Back —" MNext

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Summary
This completes the Develop Estimate Methodology lesson. In this lesson, you learned:
Parametric is the preferred technique for software estimate, while Analogy is useful for sizing and

when comparable historical data are limited.

Cost estimating relationships {CERs) and schedule estimating relationships (SERs) are equations for
effort and duration, respectively, with inputs corresponding to the drivers.

Software estimates may need to be time-phased to support budgeting {usually annual) and planning
{usually monthly?.

Many off-the-shelf (OTS) models for software estimating are available, but they should be calibrated
to your data and used with caution.

Develop Collectand % Develop Consider \ Document
Scope and) Analyze Estimate Risk and J and Present
oach Data _, Methodology Uncertain Estimate

-‘| Page 40 of 41 | p

Back — et

Long Description

Graphic illustrates the steps of the Cost Estimating process. The steps from left to right are:
Develop Scope and Approach, Collect and Analyze Data, Develop Estimate Methodology (highlighted),
Consider Risk and Uncertainty, and Document and Present Estimate.

CLB023 Software Cost Estimating
Lesson 3 - Step 3: Develop Estimate Methodology TOC | RESOURCES | PRINT | HELP

Lesson Completion

You have completed the content for this lesson.
To continue, select another lesson from the Table of Contents on the left.
If vou have closed or hidden the Table of Contents, click the Show TOC

button at the top in the Atlas navigation bar.

-‘| Pagediofds |

Back — [t

