CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Introduction and Objectives

Welcome to the Collect and Analyze Data lesson. After completing this lesson, you will understand this
second of the five major steps of developing a software cost estimate.

Lesson Objectives

After completing this lesson you will be able to:

s Compare various sources of software data.
s Recommend appropriate data normalization steps to support software cost estimates.
s Critique productivity as a commaonly-cited software metric.

+ Relate the primary software cost drivers to each other and to development cost.

Develop Collect and Develop b Consider % Document
Scope and h Analyze Estimate : Risk and 3 and Present
\pproach Data Methodology 4 Uncertainty /df Estimate

-‘ | Page 1 of 53 | p

Back (J MNext

Long Description

Graphic illustrates the steps of the Cost Estimating process. The steps from left to right are:
Develop Scope and Approach, Collect and Analyze Data (highlighted), Develop Estimate Methodology,
Consider Risk and Uncertainty, and Document and Present Estimate.

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Data

The basic estimating methodologies (analogy, parametric, engineering, and extrapolation from actuals) are
all data-driven. Credible and timely data inputs are required when using any of these methodologies. If
data required for a specific approach are not available, then that estimating methodology cannot be used.
Because of this, the estimator must identify the best sources for the method to be used.

The table below shows eight basic sources of data and whether they are considered a primary
or secondary source of information. When preparing a cost estimate, estimators should consider all

credible data sources; however, whenever feasible, primary sources of data should be given the most
consideration.

Source Source Type

Basic Accounting Records Primary

Historical Databases Primary or Secondary

Technical Databases Primary or Secondary

Secondary

‘ | Page 2 of 53 | p

Back) MNext

Popup Text

Analogy

An estimate of costs based on historical data of a similar (analogous) item.

Parametric

A cost estimating methodology using statistical relationships between historical costs and other program
variables such as system physical or performance characteristics, contractor output measures, or
manpower loading.

Engineering

Derived by summing detailed cost estimates of the individual work packages and adding appropriate
burdens. Usually determined by a contractor’s industrial engineers, price analysts, and cost accountants.

Popup Text
Extrapolation from actuals: Extrapolation method requires prototype or preproduction actual cost data

on the system considered. Primarily used in estimating the production cost of system hardware, and
assumes a relationship (technical, performance) between cost of prototypes and production units.

Primary sources

Primary data are obtained from the original source, and are considered the best in quality and the most
reliable.

Secondary sources

Secondary data are derived (possibly “sanitized”) from primary data, and are not obtained directly from
the source. Because of this, they may be of lower quality and usefulness.

Long Description

Table with two columns and nine rows. The data are as follows:

Source Source Type

Basic Accounting Records Primary

Cost Reports Primary or Secondary
Historical Databases Primary or Secondary
Functional Specialist Primary or Secondary
Technical Databases Primary or Secondary

Other Information Systems | Primary or Secondary

Contracts Secondary

Cost Proposals Secondary

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Data, Cont.

Like risk, software may have broader range of
potential data, since most systems contain
software.

While there are certain platform considerations that

drive differences in software complexity and hence

development productivity, software data should not

be considered commodity-specific a priori. Cost Data

In general, the preference is to combine data and
adjust for differences appropriately rather than

discard data altogether and end up with a data set TechanaI Dat?,
that is unnecessarily narrow. Cost Drivers, Size

While focus is on cost data, do not forget to collect ;
technical data, which will help identify cost drivers Prngrammatlc Data,
and support size estimates, and programmatic data,

which will support schedule estimates. Schedule

Where possible, collect both initial estimates and _

final values, in order to capture historical growth.

@' Questions Managers
S Should Ask

‘ | Page 3 of 53 | p

Back & J MNext

Popup Text
Questions Managers Should Ask

o Does the estimating organization have a method for organizing and retaining information on
completed projects (a historical database)?

e Does the database contains a useful set of completed projects?

« Has unpaid overtime, if used, been quantified, so that recorded data provide a valid basis for
estimating future effort?

e Are schedule milestones (start and finish dates) described in terms of criteria for initiation or
completion, so that work accomplished between milestones is clearly bounded?

« Have any cost models that were used for estimating been used also to provide consistent
frameworks for recording historical data (which helps ensure that comparable terms and parameters
are used across all projects, and that recorded data are suitable for use in the estimating models)?

« Does the organization have a structured process for capturing effort and cost data from ongoing
projects?

o Does the development organization hold postmortems at the completion of projects to ensure that
recorded data are valid, and to ensure that events that affected costs or schedules get recorded and
described while they are still fresh in people’s minds?

« Does information on completed projects include the life-cycle model used, together with the portion
covered by the recorded cost and schedule, and a workflow schematic that illustrates the software
process used?

« Does information on completed projects include actual (measured) size, cost, and schedule, and the
actual staffing profile?

« Does information on completed projects include an estimate at completion, together with the values
for cost model parameters that map the estimate to the actual cost and schedule?

Long Description
Inverted pyramid graphic with the text in the following descending order:
Top tier: Cost Data, Technical Data

Second tier: Programmatic Data, Cost Drivers, Size
Bottom tier: Schedule Estimate

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Data - Development Data

Software Resource Data Reports (SRORs) are used
to collect and report software element data on
major Department of Defense (DoD) software-
intensive systems, and they represent DoD's only
standard centralized approach to software data
collection.

Data is required from MAIS programs and MDAPs
containing software effort with a projected value
greater than 325M (FY 2002 dollars).

The data collected includes the type and size of the
software application, the schedule and labor
resources {(effort) needed for its development, the
quality of the delivered software, and other
descriptive development data, capturing both the
estimated and actual characteristics of new
software developments or upgrades.

Both the Government program office and, later on TS T T L e T e B e e
after contract award, the development contractor ————e L B
submit this report. For contractors, this report e

constitutes a contract data deliverable {CORL) that T

formalizes the reporting of software metric and oy

resource data.

Select image to view enlarged version.

‘ | Page 4 of 53

Back &

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Data - Development Data, Cont.

Mote that the SRDR forms were previously designated DD 2630, but since they are now tailorable, no DD
designation is given.

During each of the phases of software development, numerous activities will be performed in disciplines
such as software development, software program management (PM], software configuration management
{CM}, and software guality assurance {QA). It is important to try to capture the associated effort as
comprehensively and with as much granularity as possible.

The DoD 5000.4-M-1, Cost and Software Data Reporting (CSDR) Manual, OSD CAPE, Movember 4,
2011 provides guidance. Select each graphic below to view examples of the Initial Government Report,
Initial Developer Report, and Final Developer Report.

Initial | Initial ~— Final
Government Development Developer
Report Report Report

‘ | Page 5 of 53 | b-

Popup Text
Program Management (PM)

The process whereby a single leader exercises centralized authority and responsibility for planning,
organizing, staffing, controlling, and leading the combined efforts of participating/assigned civilian and
military personnel and organizations, for the management of a specific defense acquisition program or
programs, throughout the system life cycle.

Configuration Management (CM)

The technical and administrative direction and surveillance actions taken to identify and document the
functional and physical characteristics of a Configuration Item (CIl), to control changes to a Cl and its
characteristics, and to record and report change processing and implementation status. It provides a
complete audit trail of decisions and design modifications.

Quality Assurance (QA)
A planned and systematic pattern of all actions necessary to provide confidence that adequate technical

requirements are established, that products and services conform to established technical requirements,
and that satisfactory performance is achieved.

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Data - Cost Data

SRDR data are entered into the Defense Automated Cost Information System (DACIMS) that provides the
cost community with instant access to historical cost data needed to develop independent, substantiated
estimates. DACIMS is a secure website that allows cost analysts to browse through thousands of
Contractor Cost Data Reports {CCORs) and SRDRs and associated documents via the Internet.

It is the largest repository of DoD cost information. Registration for access to the DACIMS can be
obtained through the Defense Cost and Resource Center (DCARCT.

SRDRs contain effort data (labor hours) and the corresponding CCDRs have cost data (dollars), which
provides a potential cross-check for software development labor rates (dollars per hour].

Mr. Mike Popp, a cost analyst for the Maval Air Systems Command (NAVAIR) routinely posts summary SRDR
data in convenient Excel form to one of the DCARC eRooms.

Defense Cost
and Ikesource center

-‘ | Page 6 of 53 | »

Back _ MNext

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data

Software Data - Sizing Data

Estimating product size lays the foundation for
software cost and schedule estimation.

Size is considered by software project managers to
be a major technical performance or productivity
indicator, allowing them to track a project during
development.

Estimating product size is not simple to do. Itis
often dependent on the experience of the persons
doing the estimating.

To transcend an expert-based approach, it is
crucial to have sizing data in the historical
database, for the purpose of generating both sizing
estimates and size-driven cost estimating
relationships {CERs].

‘ | Page 7 of 53 | p

Back E MNext

TOC | RESOURCES | PRINT | HELP

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data

Software Data - Sizing Data, Cont.

The traditional software data sizing measurement is
Source Lines Of Code {SLOCY. One of the
advantages of SLOC is that it can be counted
empirically in an automated fashion after the code is
released.

Counting conventions vary widely, but there is a
movement in the community toward a common
standard of the "USC code counter.”

SLOC counts can represent either physical SLOC, a
simple tally of all non-blank, non-comment lines, or
logical SLOC, which tries to arrive at a consistent
semantic unit by taking into account language
syntax and varying programming styles,

‘ | Page 8 of 53 | p

Back) Next

TOC | RESOURCES | PRINT | HELP

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Data - Operating and Support (0O&S) Data

As previously noted in the CES discussion, 0&S cost elements 6.2 Sustaining Support and 6.3 Software
Maintenance Support are of particular interest in software.

Collecting data to support Post-Deployment Software Support (PDSS) estimates is a particular challenge,
and a joint effort is underway by the three service cost centers to collect software maintenance data
from both organic support activities and contractors.

In the area of contractor logistics support (CLSY), a DD Form 1921-4 is being considered to capture some
data on software support.

T Pt i D e Fok SRR of SRS T o FUAT 1 Eiagh | P | B8 BIEor 4 Pihaly il bl U8 B PNLEo 1 1 P ORE P a1 ey He] Aty P8 Ll FASIRT 0 CLrueReg Eel fabeing Pa ciee.
Bl e M ik Do U O Wy O KT OF T RO I M,) s B 5] Tl Dot 1 C it o Do 1A 0 B AL St it S T i (£ 55010 1 e dandl, Wi B T
o it s AP i B o s bW 08 L0 b g1 [y B Bt U3 ey il) (O Io0 OF SAIGAPLIRLAL I st A ey B Sl] JIMRY O i

I B B T O L VSR R RS R T TR RAOE SRl R TN
1wy TR LS S0 PO T 1 CORTRACTON TP [i RELE LITHE LS. Graksle T Dl |!¢ ARTRICRA T PLLA LR

COSTDATA SUMMARY REFORT l oy B0
waral

B M Lase 13

T PG BBCO TREC T
o EE R E T e e T - T e T 17 P T T e b PP TS
& DORTRACT bl

R W A TR 1 bisade

Vs o P A LF APVRR R T N R LR T WAA |ka s AR H Pl ki B, B T L 7
5 SR CATE (T L s T,

5 D DATE 7Y FUMC P T L i T dTE Roir

Ol i
DT NN LA Pl M e VL CETAN TN W T TS A R] 20 DAL P D LD

T T PETe————

Loy v LR Tk v ¥ el =i L

‘ | Page 9 of 53 | p

Popup Text
Post-Deployment Software Support (PDSS)

Those software support activities that occur after the deployment of the system.

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Data - Operating and Support (O&S) Data, Cont.

Office of the Secretary of Defense (OSD) undertook
the Visibility and Management of Operating and
Support Costs (VAMOSC) initiative to facilitate the
development of a well-defined, standard
presentation of O&S costs by major defense
acquisition programs.

VAMOSC data can serve as a basis for decisions
concerning affordability, budget development,
support concepts, cost tradeoffs, modifications, and
retention of current systems.

Unfortunately, in the area of software support,
VAMOSC data alone are generally insufficient to
support estimating much beyond a simple average.

The Services have implemented VAMOSC through
the following programs:

* Army - Operating and Support Management
Information System (OSMIS)
s+ Nawvy - Navy VAMOSC

Air Force - Air Force Total Ownership Cost
(AFTOC)

-‘| Page 10 of 53 |p

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Data - Rates Data

Because software development is a labor-intensive
activity, the traditional estimating approach is to
estimate effort first in labor hours or person-months
and then "“dollarize” that effort by applying the
appropriate labor rate.

Rates should be representative of the capability
used to produce the effort estimate, and premiums
should be included for specialized skills such as
experience with programming languages or
development platforms or qualifications such as
security clearances.

These analyses should be based on historical data
for labor rates and associated inflation trends.

Such data may be available via government
surveillance organizations such as

e
the Defense Contract Audit Agency (DCAA) and & l = .ﬁ—,.lllll;
Defense Contract Management Agency (DCMAT. \ g«

-‘ | Page11ofs3

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Data - Collecting Rates Data

In collecting rates data, it is preferable to have
actual rates across a wide range of labor
categories, each with clearly-defined qualifications,
and several years.

Contractor-specific rates may also be available

in General Services Administration {GSA) schedules
and proposals, but make sure to be clear on
whether the rates are binding or merely a current
best estimate.

Where necessary, a single composite rate,
representing the weighted average |abor rate of the
development team, may suffice.

-‘| Page 12 of 53 |p

CLB023 Software Cost Estimating

Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Data Mormalization

The mantra for data normalization is "What's in the number?” While much faith is put into actual data from
historical programs, it is important to understand the context in which those data were collected so that

we can properly adjust them to be comparable with data from other sources - the proverbial "apples to
apples.”

Should Ask
H u

CH\.' Questions Managers]

-‘| Page 13 of 53 |p

Back) Next

Popup Text
Questions Managers Should Ask
Is the organization’s historical evidence capable of supporting a reliable estimate?

e Are elements included in (and excluded from) the effort, cost, schedule, size, and reuse measures in
the database clearly identified?

« Have the data in the historical database been examined to identify inconsistencies, and have
anomalies been corrected or explained?

o Does information on completed projects include a work breakdown structure or alternative
description of the tasks included in the recorded cost?

e Does information on completed projects include non-labor and management costs?

o Does information on completed projects include a summary or list of significant deliverables

(software and documentation) produced by the project, and a summary of any unusual issues that
affected cost or schedule?

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Data Mormalization, Cont

For software estimating, the three most important types of normalizations are content, sizing, and
operating environment. Select each tab below to learn more.

_ Sizing Operating Environment

Content

Effort data should be adjusted to reflect a consistent set of activities. Ideally, it should include all
labor activities charged directly to the software development task, such as:

Engineering labor charges for System/Software Requirements Analysis, Design, Code, Test,
and Integration

Documentation effort

Configuration Management (Ch]

Software Quality Assurance [QA)

Management effort charged directly to the task

Mormalization is tantamount to the estimating step and must therefore be both traceable and defensible.

There will always be a certain amount of irreducible random “noise” in the data, but normalization strives
to adjust for systematic effects such as the changing purchasing power of the dollar through time
{inflation) that if ignored would introduce “bias.” By doing so, we can better detect the "signal” in the
data, namely the response of cost to driving wvariables.

-‘| Page 14 of 53 |p

Back) Next

Popup Text

Content

Effort data should be adjusted to reflect a consistent set of activities. Ideally, it should include all labor
activities charged directly to the software development task, such as:

a.

©o00T

Engineering labor charges for System/Software Requirements Analysis, Design, Code, Test, and
Integration

Documentation effort

Configuration Management (CM)

Software Quality Assurance (QA)

Management effort charged directly to the task

Sizing

Delivered SLOC should be adjusted to reflect degree of reuse to give an Equivalent (New) SLOC number,
which should have a more consistent relationship with effort.

Operating Environment

Data are often segregated by platform and/or application to reflect the way that reliability, safety, and
other considerations affect the complexity and difficulty of the code.

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Data Mormalization - Content

Arguably the most important normalization step is to adjust effort or cost numbers to reflect a consistent
work scope or "content.” One required application of this principle is the segregation of recurring and non-
recurring costs. Select each tab below to learn more about each.

I - urring Costs

Mon-recurring costs include all the efforts required to develop and qualify a given item, such as
requirements definition/allocation, design, analysis, development, and qualification/verification.

Virtually all software development and testing costs prior to initiation of routine system operation are
non-recurring.

=
"""'-ll'l-l R

';zuﬂtuln -

-‘| Page 15 of 53 |p

Back) Next

Popup Text
Non-recurring Costs

Non-recurring costs include all the efforts required to develop and qualify a given item, such as
requirements definition/allocation, design, analysis, development, and qualification/verification.

Virtually all software development and testing costs prior to initiation of routine system operation are non-
recurring.

Popup Text
Recurring Costs

Recurring costs cover all efforts required to produce end-item hardware, including manufacturing and test,
engineering support for production, and spare units or parts. Production support software costs are
commonly classified as recurring.

A more germane normalization for software is the segregation of fixed and variable costs.

For example, infrastructure costs such as SlLs are largely fixed — you need the lab whether you write one
line of code or a million — whereas design/code/test activities do vary with the amount of code being

developed.
Examples of adjustment for consistent scope include:

« If the effort data for some historical programs include software requirements but others start at
design, then either the requirements effort must be removed from the former or a way must be
found to “plus up” the latter to represent the same scope.

e Suppose the systems engineering department compared five similar programs, and found that two
included design-to-cost (DTC) Design-to-Cost (DTC) requirements. To normalize the data, the DTC
hours must be deleted from those two programs to create a data set with consistent program scope.

Popup Text
Design-to-cost (DTC)

Management concept that historically emphasized cost-effective design (minimizing cost while achieving
performance) and targeting an Average Unit Procurement Cost (AUPC). DTC concentrated on the
contractors’ activities associated with tracking/controlling costs and performing cost-performance
analyses/tradeoffs. Cost As an Independent Variable (CAIV) has refocused DTC to consider cost objectives
for the total life cycle of the program and to view CAIV with the understanding it may be necessary to
trade off performance to stay within cost objectives and constraints. DTC is now those actions that are
undertaken to meet cost objectives through explicit design activities. Contractual implementation of DTC
should go beyond simply incentivizing the contractor to meet cost commitments—it should also incentivize
the contractor to seek out additional cost reduction opportunities.

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Data Mormalization - Historical Cost Data

Historical cost data can also be adjusted for anomalies
when it is not reasonable to expect the new project
estimates to contain these unusual costs.

For example, development test program data are
collected from five similar programs, and it is found that
one program experienced a major test failure. A
considerable amount of resources were required to find
and solve the problem.

If an adjustment is made to this data point, then the
analyst must thoroughly document the actions taken to
identify the anomalous hours.,

If the hours are removed from the base estimate, then a
corresponding risk should be added to the program’s risk
register with a consequence equal to the additional
hours and an appropriate probability (apparently 20%).

-‘| Page 16 of 53 |p

Back) Next

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Data Mormalization - Cost

Cther than simply keeping dollars {37, thousands (5K],
millions {3M), and billions {3B) straight, the most common
and important normalization of cost units is adjustment for
inflation, called escalation.

Inflation is the general increase in price levels {or
conversely decline in purchasing power) over time.

Inflation indices {or index numbers) are used to put costs
in a consistent “"base-year dollar” for the purposes of
estimating.

Inflation is certainly relevant to any software cost data,
though for the development, the preference is to estimate
effort {labor hours or person-months) first and then apply
labor rates, in which case only the rates need to be
escalated.

-‘| Page 17 of 53 |p

Back) Next

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data

Data Mormalization - Sizing Units

The more relevant normalization for software is
adjustment for sizing units.

This is less straightforward than for hardware,
where one can simply multiply by 2.54 to convert
from inches to centimeters, for example.

The most common sizing unit for software is source
lines of code (SLOC), and the most common
normalization for SLOC is the conwversion to
Equivalent SLOC (ESLOC), both of which are
addressed later in this lesson.

ESLOC attempts to capture the varying effort
associated with developing new code as compared
with reusing code, with or without modification.

The effort required to develop code also varies by
programming language, so that either data sets are
segregated by language, or a factor is applied to
convert size in one language to another.

-‘| Page 18 of 53 |p

Back) Next

TOC | RESOURCES | PRINT | HELP

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Data Mormalization - Operating Environment

Software data are often categorized by Application {(the function of the software, such as flight control or
mission planning) and Platform {where the software resides, such as Airborne or Ground). The idea is that
these are key factors influencing the difficulty and complexity of the code, and therefore the amount of
effort required to develop it.

After the categorization is determined, the analyst may segregate the data and analyze each grouping
separately. Alternately, the data may be combined and indicator variables used in the subsequent
regression analysis to account for any significant differences between groupings.

Operating Environment is also addressed in the cost drivers {complexity) section of this lesson.

Software Data - Operating Environment

Application

-‘| Page 10 of 53 |p

Back) Next

Popup Text
Long Description

Flowchart illustrating Software data categorization with Application as on one branch and Platform on the
other branch. Each category (Application, Platform) has Data as supporting subordinate components.

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Data Analysis

After data collection and normalization, data analysis is conducted to dewvelop estimating relationships.

Both software development cost (effort) and schedule {duration) can be related to size and other driving
factors, for example. Data analysis is essentially the application of graphical, numerical, and algebraic
principles from probability and statistics.

A simple bar chart could be used to show initial estimates and final values as a clear indication of code
grow th.

A histogram could show the distribution of CSCIs by size in a software database. A two-sample t-test could
be conducted to explore differences between two populations {Aircraft vs. Space, or C++ vs, C=],

A scatterplot of effort in hours vs. size in ESLOC could be used to discern a cost estimating relationship, or
CER.

-‘| Page 20 of 53 |p

Back) Next

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Data Analysis - Productivity

Cne commonly reported software metric is productivity, which attempts to capture the efficiency of
designers and programmers in developing code,

It is simply the ratio of code size {usually in SLOC) to effort {in labor hours, days, or months). While this
quotient is often called a factor, it is really more of a rate. Its inverse {effort per size), which is often
used, makes this clearer.

-‘| Page 21 of 53 |p

Back) Next

Popup Text
Productivity

The actual rate of output or production per unit of time worked.

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Data Analysis - Productivity, Cont.

The table below illustrates notional historical productivity rates based upon the level of complexity of a
software project. If these numbers seem low, it is important to note that the programmer is not simply
sitting down at the keyboard and typing away, as if writing an email.

There is considerable requirements analysis, design, code, and test effort that must be amortized across

each individual line of code. Ideally, these rates would be based on a database of recently completed
comparable development efforts.

Complexity of Expected
Software Project Productivity

Simple 196 SLOC/PM

Difficult 69 SLOC/PM

SLOC = Source Lines of Code
PM = Person-Months

Caution should be taken when using productivity as the primary basis of a software estimate,
' as it neglects the effects of fixed costs {which can cause larger projects to have a slightly
L]

higher apparent productivity) and diseconomies of scale {which can cause larger projects to
§ / have a much lower effective productivity).

-‘| Page 22 of 53 |p

Back) Next

Long Description

Table with data:

Complexity of Software | Expected
Project Productivity
Simple 196 SLOC/PM
Average 124 SLOC/PM
Difficult 69 SLOC/PM

SLOC = Source Lines of Code

PM = Person-Months

CLB023 Software Cost Estimating

Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Cost Drivers

A primary goal of data analysis is to understand the factors or parameters that drive cost in order to

facilitate the development of CERs. The three main categories of software development cost drivers are
Size, Complexity and Capability, each of which is discussed in the following pages.

Throughout this discussion it is important to note that the nature of cost drivers is expected to vary by
the type of software. Select each tab to learn more about types of software.

BN cos | e

Developed - The effort for designing, coding, and testing developed software is driven by the size and
complexity of the code, and the capability of the development team.

-‘| Page 23 of 53 |p

Back) Next

Popup Text
Developed

Developed - The effort for designing, coding, and testing developed software is driven by the size and
complexity of the code, and the capability of the development team.

COTS

Commercial off-the-shelf (COTS) - The functionality provided by the COTS package and its
sophistication drive purchase and licensing costs, and the ease of use and thoroughness of documentation
of its application programming interface (APIs) drive integration costs.

ERP

Enterprise Resource Planning (ERP) - The scope and effort for an ERP implementation are driven by
the RICE-FW count, an enumeration of the required Reports, Interfaces, Conversions, Extensions, Forms
and Workflows.

CLB023 Software Cost Estimating

Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Cost Drivers - Size

The primary driver for developed software is the size of the code, as an indicator of the overall scope of
the effort. Just as a larger ship requires more welding, and a larger IT installation requires running more
cable, producing more code generally requires more effort. {The advent of auto-generated code presents

a challenge in relating effort to size of the delivered code, and the focus of the discussion here is on
human-generated code.)

Software size is roughly analogous to weight, which is commonly used as a cost driver for hardware
production estimates (arguably as a proxy for scope of the effort).

Just as miniaturization can drive a reversal in the weight-cost relationship in hardware (i.e., lighter costs
more], placing size restrictions on software, such as the memory limitations on a satellite, can cause a

similar reversal. To paraphrase Blaise Pascal and Mark Twain, “If I'd had more time, [wouldve written less
code.”

-‘| Page 24 of 53 |p

Back —) Next

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Cost Drivers - Size, Cont.

The most common sizing measure is SLOC; however,
other potential sizing units include:

Function Points, which attempt to remain
language-independent by focusing on the
required functionality of the software

Object Points, which are tailored for use with
object-oriented (OO) programming

Story Points, which are used in Agile Software
Development

s RICE-FW, the sizing measure specific to ERF

Keep in mind that the SRDRs should be considered a
primary source of Size and other software data.

Also remember that for new programs, software size
is itself an estimate!

-‘| Page 25 of 53 |p

Back ———) Next

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Cost Drivers - Size - Source Lines of Code (SLOC)

Source Lines Of Code (SLOC) is exactly what it
sounds like.

When =ach code release is completed, an
automated code counter can be run to
tally Delivered Source Lines Of Code (DSLOC) for - :
inclusion in the historical database. / '? jﬂfft}[}jjg
o i G0y
Logical SLOC is generally preferred to physical SLOC, ; 1)y -'}E?j JIEG 10
though consistency throughout the database is L ' '
most important.

For new programs, SLOC must be estimated up
front, often by analogy to comparable completed
efforts.

-‘| Page 26 of 53 |p

Back —) Next

Popup Text
Source Lines of Code (SLOC)

Number of lines of software code, including executable instructions and data declarations but excluding
comments, blanks, and continuation lines. Can be accurately and consistently counted using automated
tools once the code is developed.

Delivered Source Lines of Code (DSLOC)

The actual source lines of code (SLOC) delivered as part of a software release. May be physical or logical.

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data

Software Cost Drivers - Size - SLOC, Cont.

In a typical software development CER, as in the one
from COCOMO II, the exponent on the size parameter
indicates the response of effort to size.

A priori, we might expect a direct linear relationship
between size an effort, and this is the implicit
assumption of the productivity metric just discussed.

Howewver, if economies of scale are present, effort
should increase at a decreasing rate with size,
corresponding to an exponent less than 1.

Conversely, if diseconomies of scale are present, effort
should increase at an increasing rate with size,
corresponding to an exponent greater than 1.

Experience shows that the latter is more common, and
our examples will reflect that scenario.

These equations are calibrated to estimate the effort
of an entirely new development, writing code from
scratch.

TOC | RESOURCES | PRINT | HELP

SOFTWARE COST
ESTIMATION
WITH COCOMO 11

m L||||-r|I:|. A u'-.'lnur Elrnm'.'n

-‘| Page 27 of 53 |p

Back —) Next

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data

Software Cost Drivers - Size - Equivalent SLOC (ESLOC)

Modern software is typically not written from
scratch, but instead its development involves the
reuse of code. Therefore, a new sizing metric must
be used to reflect the change. Equivalent SLOC
(ESLOC] is now used.

It is important to to understand the varying terms
used for reused code.

"Reuse” often implies no modification, whereas

an M "

modified” usually refers to reused code that was
altered to some extent,

"“Carryover” is often used to denote code that is
being reused from the previous release of the
software.

TOC | RESOURCES | PRINT | HELP

BONPOA1011
P10011%

410101
$111111
/101000

188111111
1116811606
11081111

016000

‘ | Page 28 of 53 | p

Back —) Next

Popup Text
Equivalent Source Lines of Code (ESLOC)

A weighted average of the amounts of code requiring re-design, re-implementation, and re-test.

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Cost Drivers - Size - ESLOC, Cont.

The idea of ESLOC is to convert DSLOC to a {smaller) number to reflect the total effort required. The
actual effort, taking into account reuse, is "equivalent” to the effort that would be required to
develop the smaller amount of code {(ESLOC) from scratch.

ESLOC is generally calculated by applying an efficiency factor to DSLOC.

Efficiency Factor (EF) X DSLOC = ESLOC

By definition, the efficiency factor for all new code is 100%. That is, the ESLOC for all new code is
identical to DSLOC. The efficiency factor decreases from there as reuse gets more "efficient.”

Applying a small efficiency factor makes ESLOC quite small in comparison to DSLOC. Because this is
the primary driver of the estimate, care must be taken in applying the efficiency and making sure it is
soundly derived.

-‘| Page 20 of 53 |p

Back —) Next

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Cost Drivers - Size - ESLOC, Cont.

A standard approach is to compute the efficiency factor as a weighted average of factors for each phase
of development. For example, assume that 40% of a new development effort is design, 30% is coding, and
30% is integration and test [I&T].

The weighted averages can be applied to the fraction of existing code that needs to be redesigned, the
fraction of existing code that needs to be rewritten, and the degree of retest required, respectively.

The information presented in the graphic assumes the following software development scenario: existing

computer software configuration item {CSCI) of 10,000 SLOC {10 KSLOC), 50% redesign, 80% recode,
100% retest.

-“—m

Component Weighted Avg Existing CSCI Efficiency Factor
New Development

Design 40% (0.4)

ESLOC = 74% X 10,000 = 7,400 (7.4 KSLOC)

The effort to reuse this code is 74% of what it would take to write it from scratch, a 26% savings. To
compute total ESLOC for a planned release, add the size of the new code to be produced and the
ESLOC calculations for each piece of reused code.

-‘| Page 30 of 53 |p

Back —) Next

Popup Text

Degree of retest

Generally all code needs to be retested, even the portion reused without modification.
Long Description

Table with the following data:

Component | Weight Avg. New Existing | Efficiency

Development CSCI Factor
Design 40% (0.4) 50% 20%
Coding 30% (0.3) 80% 24%
1&T 30% (0.3) 100% 30%
Total 74%
ESLOC = 74% X 10,000 = 7,400 (7.4 KSLOC)

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Cost Drivers - Size - ProRad ESLOC Calculations

The number of SLOC for the software development
effort of each waveform was known to be a driving
cost of the estimate.

The sizing estimate started in FY1998 with a review
of the waveforms to be applied to the Air Force's
SpeakEASY Radio.

The Rome Laboratories had developed a list of
waveforms and expected SLOC as part of the design
for SpeakEASY .

These SLOC counts were reviewed by a team of
radio and waveform experts from the Army's PM
TRCS, the Navy's Digital Modular Radio Program, and
from DARPA to come up with expected SLOC for the
ProRad application waveforms,

Similar reviews were conducted with other
analogous radio systems.

Click here to view a ProRad waveform SLOC data
= Case Study

-‘| Page 31 of 53 |p

Back —) Next

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Cost Drivers - Size - ProRad ESLOC Calculations, Cont.

In sum, the following programs were used to help
estimate the SLOC for the warious ProRad waveform
software development efforts:

s Army Systems: Joint Tactical Terminal (JTT);
Joint Communications Interface Terminal
(1CIT)

* MNawvy Systems: Digital Modular Radio {DMR);
Multi-Function Information Distribution System
(MIDS)

* Air Force Systems: Airborne Integrated
Terminal Group (AITG); SpeakEASY Radio

In addition, two acquisition strategies were
evaluated for each waveform:

Develop the entire waveform software from
scratch; and

Modify the existing waveform software to

make it SCA-compliant (a se E t u d
Click here to view a3 ProRad waveform SLOC data y

table,

-‘| Page 32 of 53 |p

Back —) Next

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Cost Drivers - Size - Function Points

Function points are a size measure that considers the number of functions being developed based on the
requirements specification. It is perhaps the most perhaps the most prevalent alternative to SLOC,

The functions counted comprise:

External Inputs (EI} - User inputs that provide data

External Outputs (EO) - Output to users such as reports, screens, error messages

External Inquiries (EQ) - Data sent to other applications

Internal Logical Files (ILF) - Online input that results in software response

External Interface Files (EIF) - Machine readable interfaces used to transmit information to another

system (disks and tapes)

a—r__’
Function Type Simple Average

3 4

-‘| Page 33 of 53 |p

Back —) Next

Long Description

Table with the following data:

Function Type | Simple | Average | Complex

El 3 4 6
EO 4 6 7
EQ 3 4 6
ILF 7 10 15

EIF 5 / 10

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Cost Drivers - Size - Function Points, Cont.

After the functions are counted, they are weighted first for complexity to get an unadjusted function

point {UFP) count—see table below. The UFP count is then further adjusted to account for 14 additional
factors.

There are a number of standards for function point counting, and the International Function Point Users
Group (IFPUGY certifies function point counters,

e e e,
m

Function Type Simple
El |

-‘| Page 34 of 53 |p

Back —) Next

Long Description

Table with the following data:

Function Type | Simple | Average | Complex

El 3 4 6
EO 4 6 7
EQ 3 4 6
ILF 7 10 15

EIF 5 / 10

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Cost Drivers - Complexity

After Size, the next broad category of software cost drivers
is Complexity, factors relating to the software itself,

The factors may include:

Quality - requirements for safety or reliability that
dictate the degree to which the code must be bug-
free.

Language - the programming language(s) used for
development.

Application - the intended function of the software,
which dictates the difficulty of the algorithms needed

Hardware Limitations — limited memory or processor
speed, as on a satellite.

Mumber of Modules - drives the degree of integration,
standardization, communication, and coordination
required.

Mumber of Interfaces - both internal interfaces with
COTS packages and external interfaces with other
systems.

-‘| Page 35 of 53 |p

Back —) Next

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data

Software Cost Drivers - Complexity - Complexity Factors

TOC | RESOURCES | PRINT | HELP

Greater complexity drives up cost, often at increasing rates. While the response may not be exponential in
a strict mathematical sense, complexity factors can have a significant impact. COCOMO II divides
complexity-related considerations into two groups, product factors and platform factors.

I 7' tform Factors

RELY Required Software Reliability

DATA Database Size

CPLX Product Complexity

RUSE Developed for Reusability

DOCU Documentation Match to Life-Cycle Needs

Whether or not you use COCOMO, the response
illustrated here is typical.

Wiy Low

Product EMs by Rating

—NELY
— DATS

e RLISE
——D0CL

Law Fominal High wery High Extra High

The EMs are Effort Multipliers, and you can see that a

single factor can easily drive effort up or down Select the image to enlarge.

{usually the former) by 20 or 30 percent.

-‘| Page 36 of 53 |p

Back —) Next

Popup Text
Product Factors

e« RELY Required Software Reliability

« DATA Database Size

e CPLX Product Complexity

e RUSE Developed for Reusability

« DOCU Documentation Match to Life-Cycle Needs

Whether or not you use COCOMO, the response illustrated
here is typical.
The EMs are Effort Multipliers, and you can see that a single

200
180
160
140
120
100
[HD
g
A0
D20
oo

Product EMs by Rating

’/’ﬁ:—?

—DATA

-CRLY
s RLISE
DOy

Wery Lo Law Namdnal High Very High Extra High

factor can easily drive effort up or down (usually the former) by 20 or 30 percent.

Popup Text

Platform Factors

e« RELY Required Software Reliability

« DATA Database Size

e CPLX Product Complexity

« RUSE Developed for Reusability

« DOCU Documentation Match to Life-Cycle Needs

Whether or not you use COCOMO, the response illustrated
here is typical.

200
140
160
140
1zn
100
D
D0
DAL
D20
URLE

Product EMs by Rating

%\f

— AT

CPLK
m— RLISE
——D0Cy

Wery Ly Lo Forminal High wWery High Extra High

The EMs are Effort Multipliers, and you can see that a single factor can easily drive effort up or down

(usually the former) by 20 or 30 percent.

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Cost Drivers - Complexity - Quality

Quality requirements for DoD software are usually
defined by system safety (if this flight software fails,
the plane may crash, and the crew may die) and
operational availability (high system reliability, so that it
is almost never "down™).

High quality calls for well-defined requirements, careful
design, thorough testing, and often additional Mission q\‘x\‘\\\\\\\-\ [
Assurance (MA) or Independent Verification and ﬁg;j‘ﬁ'ﬁ“ ﬂ"@{?’&f‘i

Validation {IV&W), all driving up effort in comparison to / VTR
a slapdash development. i .

Quality is primarily related to the COCOMO EM for
Reliability (RELY].

High-quality software has the side benefit of being V"}’]flﬁiﬂfﬂ ASSUV_E“"C_EE
eminently more maintainable. "-“'_’ﬁ tion E,\..fahda'_tlﬂd_

Typically there will not be many bugs to find in the first
place, and those that do arise are relatively easy to fix,

-‘| Page 37 of 53 |p

Back —) Next

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data

Software Cost Drivers - Complexity - Quality, Cont.

As with many complex development efforts, software is
often prey to major defects uncovered during
integration and testing {I&T), requiring significant
rework.

To awvoid this situation, a sound development approach
includes breaking things down into manageable
components, defining standards and interfaces, and
verification and validation of each step throughout the
process.

Tight schedules and staffing constraints often force a
departure from these best practices.

The result may be that the code does not work
because of improperly defined interfaces or coders
working overtime and simply making mistakes.

Software quality measures are often collected to assist
in project management,

Typical measures include defects identified, defects
fixed, defect density, defect rates, and McCabe's
cyclomatic complexity.

-‘| Page 38 of 53 |p

Back —) Next

TOC | RESOURCES | PRINT | HELP

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Cost Drivers - Complexity - Programming Language

Computers operate based on sets of instructions

contained in programs. These programs can be written

in various languages. Within the same release, different

CSCIs may be written in di_fferent languages. The _ﬁgure "How fast must I go to reach Dayton
to the right shows the various levels of programming from Columbus in one hour?”
languages. Select each oval to read more.

_‘I’he Iuw_est level represents the binary, or machine, Compute speed given distance
instructions that a computer executes, and time.

The next level represents assembly code; one Inbemret_IEf
assembly line of code (LOC) usually generates one . Compuer o
machine instruction. SPEED = = o TIM

Mext are the Higher-Order Languages (HOLs), closer to

W . - LA Puew
normal English.” Compared to assembly language, SHE Poip
HOLs are easier to read and write, but they also SHE AC
consume more of a computer's resources. Third- LDA DIM
generation languages such as FORTRAN, COBOL, ADA,

and C are examples of HOLs. I_' olioi101
11101101
. - 00101100

Recently, there has been a trend toward Very High

Crder Languages (WHOLs), which more closely resemble
human languages. VHOLs allow a person with little or
no programming background to program a computer.

-‘| Page 30 of 53 |p

Back —) Next

Popup Text
Higher-Order Language (HOL)

A programming language that requires little knowledge of the computer on which a program will run,
allows symbolic naming of operations and addresses, provides features designed to facilitate expression of
data structures and program logic, and usually results in several machine language instructions for each
program statement. Examples include Ada, BASIC, C, C++, COBOL, FORTRAN, PASCAL, and ALGOL. Also
called Third Generation Language (3GL).

Note
As previously noted, data should be segregated by language, or different languages should be normalized
to a common standard.

Lower-order languages may be more machine efficient, but they result in lower development productivity
because they are more onerous to code.

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data

Software Cost Drivers - Complexity - Application

As previously noted, the correlated characteristics of
Cperating Environment, Platform, and Application drive
the effort needed for software development.

Application is primarily related to the CQCOMO EM for
Product Complexity (CPLX), while Platform is related to
all three Platform Factors.

For example, the hardware on which software will run
can affect the way software is written. On weapons or
space flight systems where space, weight, and power
are at a premium, computer storage may be limited,
forcing the developer to write code that is much more
efficient than for a ground system with unlimited
storage space.

Application refers to the use of the software, which may
vary by CSCI. It reflects the degree of sophistication
required in the component algorithms and relates back
to the previous discussion of Quality.

Operating systems with the requirement for reliability
and strict timing require more careful design and
development and significantly more testing than simple
math operations.

TOC | RESOURCES | PRINT | HELP

Statistical/Mathematical
String Manipulation
Graphical User Interface (GUI)
Data Storage and Retrieval
Graphical Functions
Online Communications
Control Functions
Multimedia
Real Time
Interactive
Operating System
Logical Functions

Select each of the titles on the graphic

above to read more.

-‘| Page 40 of 53 |p

Back —) Next

Long Description

A CD disk with interactive (clickable) listed topics overlaid. The topics and their descriptions are as
follows:

Statistical/Mathematical - Simple math calculations, statistical routines, calculator functionality;
processing time is not important.

String Manipulation - Text based manipulation, sorting, formatting, text-based input and output
functionality, text processing, parsing, and sorting.

Graphical User Interface (GUI) - Interactive user interface; response time not critical; input sheets for
an application, toolbar functionality, etc.

Data Storage and Retrieval - Reading and writing data to file or database, database management,
database access control and security.

Graphical Functions - Data plotting, graphics creating and access, creation and manipulation of line
charts, pie charts, etc.

Control Functions - Hardware control functions.

Multimedia - Information processing in a variety of formats (audio, video and text); response time very
important but not critical.

Real Time - Machine to machine process communication with critical response time, protocol
requirements strict, heavy interaction with hardware.

Interactive - Real time functionality with graphical capability; response must be immediate and visual,
critical response time, strict protocol requirements, heavy interaction with hardware.

Popup Text

Operating System - Task and memory functions, response time critical, heavy interaction with
hardware, strict timing and high reliability requirements.

Logical Functions - Algorithms containing complex mathematical logic such as smart air protection
systems.

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Cost Drivers - Complexity - ProRad Complexity

ProRad is a C4ISR system {specifically
Communications) embedded into multiple platforms
{ground, handheld, etc.].

Because ProRad will be crucial to communications in
theater, it has fairly high reliability requirements.

While a software failure is not an immediate safety
concern, inability to communicate can certainly lead
to loss of life on the battefield.

Data to support the ProRad estimate should be
drawn from similar programs.

For the waveforms and the operating software of
the ProRad, all new software code was to be
developed in a higher order language, such as C++.

-‘| Page 41 of 53 |p

Back —) Next

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data

Software Cost Drivers - Capability

The third main group of cost drivers is Capability,
encompassing both the skill, experience, and expertise of
the development team and the tools at their disposal.

Computer-Aided Software Engineering, or CASE, tools
should automate the software development process,
bringing integrity and efficiency.

Relevant experience on the part of the individual
programmers includes experience coding in a particular
language, experience developing a certain type of
application, and experience in a particular development
environment.

-‘| Page 42 0f 53 | p

Back —) Next

TOC | RESOURCES | PRINT | HELP

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data

Software Cost Drivers - Capability, Cont.

It can be a challenge to assess the collective
capability of a sizeable development team, and even
more of a challenge to estimate what the capability
of a development team will be early in acquisition,
before a development contractor has even been
selected.

Take care to avoid the "Lake Wobegon Effect,”
wherein all development teams are claimed to be
above average.

on the contrary, large projects tend to experience
regression to the mean.

As you would expect, greater capability drives down
cost.

Unfortunately, the effect is asymmetric, with low
capability impacting productivity disproportionately
moare than high capability.

A mnemonic for this is "Bad programmers hurt you
more than good programmers help you.”

This is illustrated on the next page.

-‘| Page 43 of 53 |p

Back — MNext

TOC | RESOURCES | PRINT | HELP

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Cost Drivers - Capability - Capability Factors

COCOMO II divides capability-related considerations into two groups: personnel factors and product
factors. Select each tab to learn more.

I #-oduct Factors

ACAP Analyst Capability

Personnel EMs by Rating
PCAP Programmer Capability

PCOMN Personnel Continuity
APEX Applications Experience

PLEX Platform Experience — ACAP

LTEX Language and Tool Experience ' ::{(gl;

——APEX
Whether or not you use COCOMO, the response - ——PLEX

llustrated here is typical. _ ——TEX

Very Low Lo Hoaminal High Very High Extra High

Mote that the effect is reversed from Complexity.

Select the image to enlarge.

‘ | Page 44 of 53 | p

Back — MNext

Popup Text
Personnel Factors

« ACAP Analyst Capability

e« PCAP Programmer Capability

e« PCON Personnel Continuity

« APEX Applications Experience

e PLEX Platform Experience

e LTEX Language and Tool Experience

Whether or not you use COCOMO, the response
illustrated here is typical.

Note that the effect is reversed from Complexity.

Product Factors

e TOOL Use of Software Tools
e SITE Multisite Development
e« SCED Required Development Schedule

1.60

140

1200

100

Q.80

060

040 1

020 1

0.00 +

Personnel EMs by Rating

— AP
— P AP
—PCON
=—APEX
——PLEX
= LTEX

Wery Low Lo Mominal High Very High Extra High

140

Product EMs by Rating

——

=T
—%IE
——SCED

Very Low Lonar Nominal High Very High Extra High

CLB023 Software Cost Estimating

Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP
Software Cost Drivers - Capability - Capability Maturity Model - Integrated

(CCMI)

In 1987, the Software Engineering Institute (SEI) at Carnegie Mellon University developed a methodology
for assessing an organization’s software processes. This became the framework for the Capability Maturity
Model {ChM).

The CMM was initially developed for the Government to evaluate an organization’s ability to perform
software development and maintenance work on Government contracts. In 2001, SEI replaced CMM-SW
with a suite of CMM Integration (CMMI) models.

The CMMI model for systems engineering and software (SE/SW) has five levels of software process
maturity. These characteristics are typically demonstrated by organizations at that level.

Software Engineering Institute
Carnegie Mellon

-‘| Page 45 of 53 |p

Back — MNext

Popup Text
Capability Maturity Model (CMM)

Originally developed by DoD’s Software Engineering Institute (SEI), the Software CMM (SW-CMM) was
extensively used for disciplined software process improvement efforts. While references to it are still
encountered, a more comprehensive and integrated process model—the Capability Maturity Model
Integration (CMMI)—has replaced the SW-CMM. The SW-CMM was retired effective Dec. 31, 2005, and all
SW-CMM ratings expired Dec. 31, 2007.

Capability Maturity Model Integration (CMMI)

Derived from the now-retired Software Capability Maturity Model (SW-CMM), the CMMI integrates a
number of disciplines into a unified model useful for process improvement. Three domain variations (so-
called “CMMI constellations”) of the CMMI exist: one for development organizations (CMMI-DEV), one for
acquisition organizations (CMMI-ACQ), and one for service-type organizations (CMMI-SVC). All the models
share a common set of core processes with additional processes added as appropriate for the domain.
While the CMMI models can provide ratings on a numerical scale (5 being the highest), DoD’s preference
is to use them primarily in a process improvement role, de-emphasizing numerical ratings. The Software
Engineering Institute (SEI) manages the three CMMI product suites.

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Cost Drivers - Capability - CMMI, Cont.

Crganizations that have implemented software
process improvements resulting from CMM and CMMI
evaluations have generally achieved many benefits,
including significant cost savings and significant
return on investment (RO},

In addition, many Government buying activities want
contractors to be certified at a particular level
before considering them for contract award.

As with most assessments, the certification does
not magically make an organization more productive,
but rather it is the application of principles and
processes that both lead to greater efficiency and
support the CMMI rating, which makes CMMI level a
reasonable indicator of productivity.

-‘| Page 46 0f 53 | p

Back — MNext

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Software Cost Drivers - Capability - ProRad Capability

The Joint ProRad Program Cffice assumed that
software would be developed by "programmers with
nominal to high skill levels and experience, using
object-oriented skills and practices.”

We should be worried that this assumption creates a
risk that developers will not be able to staff such an
above-average team for this significant effort.

Mo assumptions were made about the maturity of
the wvendors’ software development processes, such
as a particular CMMI rating.

Case Study

-‘| Page 47 of 53 |p

Back — MNext

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Knowledge Review

Wee Software Coding, Ltd., is a small business with a $30M
subcontract for software development on an ACAT I program.

TRUE or FALSE: Because of the relatively small dollar value of
the subcontract, they do not have to submit an SRDR.

Check Answer

The answer is FALSE. Any software development effort of 320M for an ACAT [program requires an
SRDR submission.

‘ | Page 48 of 53 | p

Back — MNext

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Knowledge Review

The Super-Cuper Coding Group produced a 10K SLOC CSCI using
5,000 labor hours, Which of the following would you expect for their
productivity in developing a 20K SLOC CSCI7?

Less than 10,000 labor hours

10,000 labor hours
More than 10,000 labor hours
« Less than 2 SLOC/hour

Maore than 2 SLOC/hour

Check Answer

Less than 2 SLOC/hour would be expected for the productivity in developing a 20K SLOC CSCI.
Demonstrated productivity is 2 SLOC/hour, but productivity i1s generally expected to decline for
larger efforts due to diseconomies of scale.

-‘| Page 40 of 53 |p

Back — MNext

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Knowledge Review

For which of the following factors would a rating of WVery High
translate to less development effort than a rating of Mominal?

Required Software Reliability

Database Size

Product Complexity

Platform Yolatility

' Personnel Continuity

Check Answer

Yery High rating in Personnel Continuity would translate to less development effort than a rating
of Mominal. The first four factors are all related to Complexity, which drives up development effort.
Higher Personnel Continuity, which is in the Capability family, would drive down development effort.

-‘| Page 50 of 53 |p

Back — MNext

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Knowledge Review

A software development effort is to produce two CSCIs of 8K SLOC,
The first is to be written from scratch. The second is based on an
existing CSCI of the same size, and the effort will require 80% recode
and 80% retest. What is the combined ESLOC for the two CSCIs?

8,000 SLOC
o 11,350 SLOC

12,600 SLOC

16,000 SLOC
15,000 SLOC
Check Answer

11,360 SLOC is the combined ESLOC for the two CSCIs. For the first CSCI, 8K DSLOC translates
into 8K ESLOC, because it's 100% new. The efficiency factor for the second CSCI (assuming
40%,/30%/30% Design/Code/Test) is 0.4 * 0% + 0.3 * 60% + 0.3 * 80% = 0.42, which when
multiplied by 8K SLOC gives 3,380 SLOC. The sum of the two gives the correct answer above,

-‘| Page 51 of 53 |p

Back — Mext

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Summary
This completes the Collect and Analyze Data lesson. In this lesson you learned:
Software Resource Data Reports (SRDRs) and other sources of actual effort, sizing, and other data

from completed programs are crucial to support reliable software estimates.

Software data must be normalized in order to be made comparable, including for a consistent set of
activities (effort data) and to account for differences in code counters and programming languages
{sizing data).

While development productivity (lines of code per hour, for example) is a useful and commonly cited
software measure, it is not the best way to estimate effort,

Size is the primary driver for developed software, along with Complexity of the code and Capability of
the development team and its tools.

Develop % Collect and Develop Consider % Document
Scope and 3 Analyze Estimate : Risk and b and Present
Ap _ Data F Methodology ./ Uncertainty ./ J Estimate

-‘| Page 52 of 53 |p

Back — et

Long Description

Graphic illustrates the steps of the Cost Estimating process. The steps from left to right are:
Develop Scope and Approach, Collect and Analyze Data (highlighted), Develop Estimate Methodology,
Consider Risk and Uncertainty, and Document and Present Estimate.

CLB023 Software Cost Estimating
Lesson 2 - Step 2: Collect and Analyze Data TOC | RESOURCES | PRINT | HELP

Lesson Completion

You have completed the content for this lesson.
To continue, select another lesson from the Table of Contents on the left.
If vou have closed or hidden the Table of Contents, click the Show TOC

button at the top in the Atlas navigation bar.

-‘| Page530f53 | [

Back — [t

